
iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.2.dev51

Andrea Zonca, Arun Surya

Oct 05, 2019

CONTENTS

I Getting Started 3

1 Getting started 5

II Example run 7

2 Example pipeline execution 9

III Design 13

3 IRIS Data Reduction System design 15

4 Purpose 17

5 Software infrastructure 19

6 File format 21

7 Example run 23

8 Access calibration files via the Calibration Reference Data System (CRDS) 25

9 Metadata 27

IV Calibration 29

10 Calibration 31

V Algorithms 33

11 Algorithms 35

12 Imager Algorithms 41

13 IFS Algorithms 43

14 Advanced Algorithms 45

15 Calibration algorithms 47

i

VI Reference/API 49

16 iris_pipeline Package 51

Python Module Index 61

Index 63

ii

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

The IRIS Data Reduction System is based on the stpipe package released by Space Telescope for the James Webb
Space Telescope.

With stpipe we can configure each step of a pipeline through one or more text based .INI style files, then we provide
one input FITS file or a set of multiple inputs defined in JSON (named Associations). Custom analysis steps and
pipelines for IRIS are defined as classes in the current repository iris_pipeline

Then execute the pipeline from the command line using the tmtrun executable or using directly the Python library.

The pipeline also dynamically interfaces to the CRDS the Calibration References Data System, to retrieve the best
calibration datasets given the metadata in the headers of the input FITS files. The CRDS client can also load data from
a local cache, so for now we do not have a actual CRDS server and we only rely on a local cache.

The CRDS is not under our control, the Thirty Meter Telescope will deliver a database system to replace the CRDS and
we can adapt our code to that in the future.

CONTENTS 1

https://jwst-pipeline.readthedocs.io/en/latest/jwst/associations/overview.html

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

2 CONTENTS

Part I

Getting Started

3

CHAPTER

ONE

GETTING STARTED

1.1 Requirements

First we need to install the requirements of the jwst package, see the JWST instructions, reported here for convenience:

conda create -n jwst_dev python=3.6 astropy
source activate jwst_dev

then we need to install the jwst package, currently iris_pipeline is being tested with jwst 0.13.7:

pip install https://github.com/spacetelescope/jwst/archive/0.13.7.zip

Then you need to download the CRDS cache:

git clone https://github.com/oirlab/tmt-crds-cache $HOME/crds_cache

the CRDS cache contains metadata for IRIS, the calibration files, flat fields, and a set of rules on how to choose the right
calibration file given a set of metadata, you can browse the content on Github.

Finally, we need a custom version of the CRDS library that contains some modules specific to TMT:

git clone https://github.com/oirlab/tmt-crds.git
cd tmt-crds
pip install .

1.2 Development install

First fork the repository under your account on Github, then clone your fork on your machine.

Then enter the root folder and create a development install with:

pip install -e .

5

https://github.com/spacetelescope/jwst/
https://github.com/oirlab/tmt-crds-cache/blob/master/mappings/tmt/tmt_iris_flat_0001.rmap
https://github.com/oirlab/tmt-crds-cache

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

6 Chapter 1. Getting started

Part II

Example run

7

CHAPTER

TWO

EXAMPLE PIPELINE EXECUTION

Here is an example of what it takes to configure and run a pipeline with flat-fielding and background subtraction,

2.1 Setup CRDS

Make sure you have a local checkout of the CRDS cache as explained in the Getting started page. Run the
setup_local_crds.sh to setup the enviroment variables needed to point the crds software to the CRDS cache.
Optionally source this in your shell configuration to automatically set this up.

2.2 Get input simulations

Download simulated input FITS files for the IRIS imager from Figshare. It contains a raw science frame, a raw flat
frame and a raw background frame.

2.3 Preprocess the flat frame

First we need to remove the dark frame from the flat frame and normalize it. A dark frame is already available in the
CRDS and the pipeline knows how to retrieve it based on the metadata in the FITS file headers.

We can check in the package documentation what are the available pipelines and check the configuration options of
the pipeline.PreprocessFlatfield class.

We do not need to customize it so we can directly call it from tmtrun and pass the input FITS file:

tmtrun iris_pipeline.pipeline.PreprocessFlatfield raw_flat_frame_cal.fits

This will pickup the relevant dark frame from the CRDS and process the file:

2019-10-04 17:59:48,057 - stpipe.PreprocessFlatfield - INFO - PreprocessFlatfield instance created.
2019-10-04 17:59:48,059 - stpipe.PreprocessFlatfield.dark_current - INFO - DarkCurrentStep instance␣
→˓created.
2019-10-04 17:59:48,060 - stpipe.PreprocessFlatfield.normalize - INFO - NormalizeStep instance created.
2019-10-04 17:59:48,099 - stpipe.PreprocessFlatfield - INFO - Step PreprocessFlatfield running with␣
→˓args ('raw_flat_frame_cal.fits',).
2019-10-04 17:59:48,554 - stpipe.PreprocessFlatfield - INFO - Prefetching reference files for dataset:
→˓'raw_flat_frame_cal.fits' reftypes = ['dark']
2019-10-04 17:59:49,306 - stpipe.PreprocessFlatfield - INFO - Prefetch for DARK reference file is '/
→˓home/azonca/crds_cache/references/tmt/iris/tmt_iris_dark_0001.fits'.
2019-10-04 17:59:49,307 - stpipe.PreprocessFlatfield - INFO - Starting preprocess flatfield ...

(continues on next page)

9

https://figshare.com/articles/TMT_IRIS_test_simulations/9941939

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

(continued from previous page)

2019-10-04 17:59:53,490 - stpipe.PreprocessFlatfield - INFO - Processing product raw_flat_frame
2019-10-04 17:59:53,490 - stpipe.PreprocessFlatfield - INFO - Working on input raw_flat_frame_cal.fits .
→˓..
2019-10-04 17:59:53,641 - stpipe.PreprocessFlatfield.dark_current - INFO - Step dark_current running␣
→˓with args (<IRISImageModel(4096, 4096) from raw_flat_frame_cal.fits>,).
2019-10-04 17:59:53,658 - stpipe.PreprocessFlatfield.dark_current - INFO - Using DARK reference file /
→˓home/azonca/crds_cache/references/tmt/iris/tmt_iris_dark_0001.fits
2019-10-04 17:59:54,058 - stpipe.PreprocessFlatfield.dark_current - INFO - Step dark_current done
2019-10-04 17:59:54,101 - stpipe.PreprocessFlatfield.normalize - INFO - Step normalize running with␣
→˓args (<IRISImageModel(4096, 4096) from raw_flat_frame_cal.fits>,).
2019-10-04 17:59:54,472 - stpipe.PreprocessFlatfield.normalize - INFO - Step normalize done
2019-10-04 17:59:54,472 - stpipe.PreprocessFlatfield - INFO - Finished processing product raw_flat_frame
2019-10-04 17:59:54,473 - stpipe.PreprocessFlatfield - INFO - ... ending preprocess flatfield
2019-10-04 17:59:54,811 - stpipe.PreprocessFlatfield - INFO - Saved model in raw_flat_frame_flat.fits
2019-10-04 17:59:54,811 - stpipe.PreprocessFlatfield - INFO - Step PreprocessFlatfield done

We have an output file raw_flat_frame_flat.fits and we can rename it:

mv raw_flat_frame_flat.fits flat.fits

2.4 Configure the image processing pipeline

The Image2Pipeline can be configured using a INI-style configuration file, image2_iris.cfg:

name = "Image2Pipeline"
class = "iris_pipeline.pipeline.Image2Pipeline"
save_results = True

[steps]
[[bkg_subtract]]
[[assign_wcs]]

skip = True
[[flat_field]]

config_file = flat_field.cfg
[[photom]]

skip = True
[[resample]]

skip = True

first we specify that we want to execute the pipeline defined in iris_pipeline.pipeline.Image2Pipeline, then we
can configure each of the steps, for example skip some of them. Also we can import the configuration of a step from
another file, in this case flat_field.cfg:

name = "flat_field"
class = "jwst.flatfield.FlatFieldStep"
Optional filename suffix for output flats (only for MOS data).
flat_suffix = None
override_flat = 'flat.fits'

If we do not define override_flat, the pipeline will look up a suitable flat from the CRDS, in this case instead we
specify a local flat.fits file.

10 Chapter 2. Example pipeline execution

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

2.5 Define the input data

JWST created a specification for defining how input files should be used by a pipeline, it is a JSON file named an
association, see the JWST documentation.

In our example we need to specify a input raw science frame ad a background to be subtracted, see
asn_subtract_bg_flat.json:

{
"asn_rule": "Asn_Lv2Image",
"asn_pool": "pool",
"asn_type": "image2",
"products": [

{
"name": "test_iris_subtract_bg_flat",
"members": [

{
"expname": "raw_science_frame_sci.fits",
"exptype": "science"

},
{

"expname": "raw_background_frame_cal.fits",
"exptype": "background"

}
]

}
]

}

2.6 Execute the pipeline from the command line

We can use tmtrun from a terminal to execute the pipeline:

tmtrun image2_iris.cfg asn_subtract_bg_flat.json

here is the output log:

2019-10-04 18:13:46,453 - stpipe.Image2Pipeline - INFO - Image2Pipeline instance created.
2019-10-04 18:13:46,454 - stpipe.Image2Pipeline.bkg_subtract - INFO - BackgroundStep instance created.
2019-10-04 18:13:46,456 - stpipe.Image2Pipeline.assign_wcs - INFO - AssignWcsStep instance created.
2019-10-04 18:13:46,458 - stpipe.Image2Pipeline.dark_current - INFO - DarkCurrentStep instance created.
2019-10-04 18:13:46,460 - stpipe.Image2Pipeline.flat_field - INFO - FlatFieldStep instance created.
2019-10-04 18:13:46,461 - stpipe.Image2Pipeline.photom - INFO - PhotomStep instance created.
2019-10-04 18:13:46,463 - stpipe.Image2Pipeline.resample - INFO - ResampleStep instance created.
2019-10-04 18:13:46,500 - stpipe.Image2Pipeline - INFO - Step Image2Pipeline running with args ('asn_
→˓subtract_bg_flat.json',).
2019-10-04 18:13:47,130 - stpipe.Image2Pipeline - INFO - Prefetching reference files for dataset: 'raw_
→˓science_frame_sci.fits' reftypes = ['dark']
2019-10-04 18:13:47,645 - stpipe.Image2Pipeline - INFO - Prefetch for DARK reference file is '/home/
→˓azonca/crds_cache/references/tmt/iris/tmt_iris_dark_0001.fits'.
2019-10-04 18:13:47,645 - stpipe.Image2Pipeline - INFO - Override for FLAT reference file is '/home/
→˓azonca/p/software/iris_pipeline/iris_pipeline/tests/data/flat.fits'.
2019-10-04 18:13:47,645 - stpipe.Image2Pipeline - INFO - Prefetching reference files for dataset: 'raw_
→˓background_frame_cal.fits' reftypes = ['dark']
2019-10-04 18:13:47,651 - stpipe.Image2Pipeline - INFO - Prefetch for DARK reference file is '/home/
→˓azonca/crds_cache/references/tmt/iris/tmt_iris_dark_0001.fits'. (continues on next page)

2.5. Define the input data 11

https://jwst-docs.stsci.edu/display/JDAT/Understanding+Associations

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

(continued from previous page)

2019-10-04 18:13:47,651 - stpipe.Image2Pipeline - INFO - Override for FLAT reference file is '/home/
→˓azonca/p/software/iris_pipeline/iris_pipeline/tests/data/flat.fits'.
2019-10-04 18:13:47,651 - stpipe.Image2Pipeline - INFO - Starting calwebb_image2 ...
2019-10-04 18:13:47,659 - stpipe.Image2Pipeline - INFO - Processing product test_iris_subtract_bg_flat
2019-10-04 18:13:47,659 - stpipe.Image2Pipeline - INFO - Working on input raw_science_frame_sci.fits ...
2019-10-04 18:13:47,918 - stpipe.Image2Pipeline.bkg_subtract - INFO - Step bkg_subtract running with␣
→˓args (<IRISImageModel(4096, 4096) from raw_science_frame_sci.fits>, ['raw_background_frame_cal.fits
→˓']).
2019-10-04 18:13:53,796 - stpipe.Image2Pipeline.bkg_subtract - INFO - Step bkg_subtract done
2019-10-04 18:13:53,854 - stpipe.Image2Pipeline.assign_wcs - INFO - Step assign_wcs running with args (
→˓<IRISImageModel(4096, 4096) from raw_science_frame_sci.fits>,).
2019-10-04 18:13:53,855 - stpipe.Image2Pipeline.assign_wcs - INFO - Step skipped.
2019-10-04 18:13:53,856 - stpipe.Image2Pipeline.assign_wcs - INFO - Step assign_wcs done
2019-10-04 18:13:53,898 - stpipe.Image2Pipeline.dark_current - INFO - Step dark_current running with␣
→˓args (<IRISImageModel(4096, 4096) from raw_science_frame_sci.fits>,).
2019-10-04 18:13:53,945 - stpipe.Image2Pipeline.dark_current - INFO - Using DARK reference file /home/
→˓azonca/crds_cache/references/tmt/iris/tmt_iris_dark_0001.fits
2019-10-04 18:13:54,503 - stpipe.Image2Pipeline.dark_current - INFO - Step dark_current done
2019-10-04 18:13:54,566 - stpipe.Image2Pipeline.flat_field - INFO - Step flat_field running with args (
→˓<IRISImageModel(4096, 4096) from raw_science_frame_sci.fits>,).
2019-10-04 18:13:55,328 - stpipe.Image2Pipeline.flat_field - INFO - Step flat_field done
2019-10-04 18:13:55,369 - stpipe.Image2Pipeline.photom - INFO - Step photom running with args (
→˓<IRISImageModel(4096, 4096) from raw_science_frame_sci.fits>,).
2019-10-04 18:13:55,369 - stpipe.Image2Pipeline.photom - INFO - Step skipped.
2019-10-04 18:13:55,370 - stpipe.Image2Pipeline.photom - INFO - Step photom done
2019-10-04 18:13:55,370 - stpipe.Image2Pipeline - INFO - Finished processing product test_iris_subtract_
→˓bg_flat
2019-10-04 18:13:55,370 - stpipe.Image2Pipeline - INFO - ... ending calwebb_image2
2019-10-04 18:13:55,606 - stpipe.Image2Pipeline - INFO - Saved model in test_iris_subtract_bg_flat_cal.
→˓fits
2019-10-04 18:13:55,606 - stpipe.Image2Pipeline - INFO - Step Image2Pipeline done

After completion, the reduced science frame test_iris_subtract_bg_flat_cal.fits is written to disk, it includes
all the metadata it had initially and additional details about the processing steps that were executed.

12 Chapter 2. Example pipeline execution

Part III

Design

13

CHAPTER

THREE

IRIS DATA REDUCTION SYSTEM DESIGN

15

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

16 Chapter 3. IRIS Data Reduction System design

CHAPTER

FOUR

PURPOSE

The IRIS Data Reduction System is planned to perform:

• real-time (< 1 minute) and offline data processing of IRIS images and spectroscopic data with the
iris_pipeline Python package based on JWST’s pipeline package stpipe, see the documentation

• raw readout processing from the IRIS imager and spectrograph into raw science quality frames with the C library
iris_readout at https://github.com/oirlab/iris_readout, which will be used directly during real-time operations
and will be wrapped into Python modules in iris_pipeline for offline processing.

• visualization of raw and reduced data to facilitate data assessment and analysis for real-time and offline use.
These tools will be developed later and will possibly be based on existing community software tools like DS9
or cubeviz.

17

https://jwst-pipeline.readthedocs.io/en/latest/jwst/stpipe/
https://github.com/oirlab/iris_readout
http://ds9.si.edu/site/Home.html
https://cubeviz.readthedocs.io/

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

18 Chapter 4. Purpose

CHAPTER

FIVE

SOFTWARE INFRASTRUCTURE

We rely on the excellent work mostly by Space Telescope to grow the Python in Astronomy ecosystem around the
astropy package. They also developed a suite of open-source tools to operate JWST based on their experience
operating the Hubble Space telescope.

The jwst Python package bundles several tools:

• a jwst.datamodel package to handle custom schemas for complex hierarchical metadata

• a stpipe package to configure and execute processing pipelines

• a large array of data processing modules to analyze data from all instruments on board of JWST

We leverage this effort by:

• building a custom schema for IRIS

• using stpipe to execute our pipelines

• starting from JWST processing modules and customizing them for IRIS and publishing them on the
iris_pipeline repository https://github.com/oirlab/iris_pipeline.

19

https://github.com/oirlab/iris_pipeline

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

20 Chapter 5. Software infrastructure

CHAPTER

SIX

FILE FORMAT

All data will be stored in FITS file format, following as closest as possible the conventions by JWST, see https:
//jwst-docs.stsci.edu/display/JDAT/Working+with+FITS+Files.

21

https://jwst-docs.stsci.edu/display/JDAT/Working+with+FITS+Files
https://jwst-docs.stsci.edu/display/JDAT/Working+with+FITS+Files

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

22 Chapter 6. File format

CHAPTER

SEVEN

EXAMPLE RUN

The best way to understand how iris_pipeline works is to checkout an example reduction of a raw science frame
to a reduced science frame with flat-fielding and background subtraction.

23

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

24 Chapter 7. Example run

CHAPTER

EIGHT

ACCESS CALIBRATION FILES VIA THE CALIBRATION REFERENCE
DATA SYSTEM (CRDS)

See the section about Calibration

25

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

26 Chapter 8. Access calibration files via the Calibration Reference Data System (CRDS)

CHAPTER

NINE

METADATA

iris_pipeline requires a set of metadata from TMT and from other subsystems to process the data, see the list of
required metadata.

Moreover, iris_pipeline will add to the header of processed FITS files categorizing the data in:

OB-
STYPE

OBSNAME Description

Calibration
(CAL)

IMG1-NFF, SLI-NFF LEN-SPX IMG1-DRK, SLI-DRK,
LEN-DRK IMG1-TEL, SLI-TEL, LEN-TEL

Flat field Lenslet Spectral Extraction
Master dark Telluric Star

Engi-
neering
(ENG)

SLI-IDP, LEN-IDP Instrumental dispersion

Science
(SCI)

IMG1-SCI, LEN-SCI, SLI-SCI IMG1-SKY, LEN-SKY,
SLI-SKY

Science Sky

27

https://github.com/tmt-icd/IRIS-Model-Files/blob/master/drs/drs-assembly/subscribe-model.conf
https://github.com/tmt-icd/IRIS-Model-Files/blob/master/drs/drs-assembly/subscribe-model.conf

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

28 Chapter 9. Metadata

Part IV

Calibration

29

CHAPTER

TEN

CALIBRATION

10.1 Calibration files

Auxiliary data used in DRP algorithms are called calibration data. This includes both on-sky data (that is not of the
astronomical target itself), daytime calibration frames, and other sub-component metadata. Metadata is non-image
information that will typically come from the header of raw FITS files, or from IRIS, and/or the adaptive optics system
via the observatory telemetry service. The NFIRAOS Science Calibration Unit (NSCU) will include a calibration
system that will facilitate the taking of daytime calibration frames, such as arc lamp spectra, white light flat field
images, and pinhole grids for measuring distortion. The following table summarizes the required calibration files
necessary for the Data Reduction Software.

Notes about the table: Note: * = SPEC only, PTG = pointing, D-Map = Distortion Map, Env = Environmental, DTC
= Daytime calibration, NTC = Nightime calibration.

Table 1: Calibration frames
Name Reference Type Source Algorithms
Atm. Dispersion Residual Metadata IRIS ADC Atmospheric Correc-

tion
Arc lamp spectra* CAL (2D) IRIS DTC (NSCU) Wavelength solution
Bad pixel map CAL (2D) IRIS DTC Correction of detector

artifacts
Dark Frame CAL (2D) IRIS DTC and NTC Dark subtraction
Env metadata Metadata ESW, FITS header All
Fiber image CAL (2D, 3D) IRIS DTC (NSCU) PSF Calibration
Flux calibration star CAL (2D, 3D) IRIS On-sky Extract Star, Remove

Absorption Lines
Instrument config Metadata ESW, FITS header All
Lenslet scan* Rect Matrix CAL (2D) IRIS DTC (NSCU) Spectral Extraction
NFIRAOS config Metadata ESW, FITS header All
Pinhole Grid (D-Map) CAL (2D) IRIS DTC (NSCU) Field distortion correc-

tion
PSF metadata Metadata ESW, FITS header PSF calibration
PSF star CAL (2D, 3D) IRIS on-sky PSF calibration
Sky frame CAL (2D, 3D) IRIS on-sky Sky-subtraction
Telescope config PTG Metadata ESW, FITS header All

31

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

Table 2: Real time Calibration frames
Name Reference Type Source Algorithms
Atm. Dispersion Residual Metadata IRIS ADC Atmospheric Correc-

tion
Arc lamp spectra* CAL (2D) IRIS DTC (NSCU) Wavelength solution
Bad pixel map CAL (2D) IRIS DTC Correction of detector

artifacts
Dark Frame CAL (2D) IRIS DTC and NTC Dark subtraction
Env metadata Metadata ESW, FITS header All
Instrument config Metadata ESW, FITS header All
NFIRAOS config Metadata ESW, FITS header All
Sky frame CAL (2D, 3D) IRIS on-sky Sky-subtraction
Telescope config PTG Metadata ESW, FITS header All

10.2 Access calibration files via the Calibration Reference Data Sys-
tem (CRDS)

The Calibration Reference Data System (CRDS) is a set of tools developed by Space Telescope to organize and retrieve
calibration reference files, e.g. flat frames, dark frames, for JWST and HST. When stpipe is executing a pipeline, it
can automatically connect to the JWST CRDS server and get the right flat based on the metadata in the header of the
data FITS files. The logic necessary to choose the right file is encoded in text files. Those configuration files and the
actual calibration FITS files are also cached locally so that the CRDS client library works even without any connection
to a central server.

We have created a CRDS cache folder in the Github repository https://github.com/oirlab/tmt-crds-cache, this includes
in the mappings/tmt folder the metadata for IRIS and the rules to choose the right flat-field frame, for now there is
only a dummy rule but this can be easily customize querying the metadata in the input file.

Currently we do not have any CRDS server running, but the users can download the CRDS cache locally and use it
anyway, see the Getting started documentation.

Also, the CRDS client library needs to have minimal knowledge about metadata for TMT, therefore we maintain a
fork of that library which simply adds a submodule dedicated to IRIS, https://github.com/oirlab/tmt-crds, it is quite
easy to upgrade this to newer releases of CRDS by Space Telescope.

If TMT decided to use CRDS as their Data Management System, it would leverage the extensive set of tools and
documentation available and would not require modifications to stpipe; otherwise, we will implement support for the
DMS API into (our own fork of) stpipe.

32 Chapter 10. Calibration

https://hst-crds.stsci.edu/static/users_guide/overview.html
https://github.com/oirlab/tmt-crds-cache
https://github.com/oirlab/tmt-crds-cache/tree/master/mappings/tmt
https://github.com/oirlab/tmt-crds

Part V

Algorithms

33

CHAPTER

ELEVEN

ALGORITHMS

Algorithms to be implemented for the IRIS imager and Integral Field Spectrograph. Once the actual classes are
implemented in iris_pipeline, we will just link their implementations.

11.1 Generate master dark

The master dark is generated by the median of 5-10 individual dark frames taken at the same exposure. This removes
any of the frame-to-frame noise variation. Individual dark frames are zero illumination calibration frames with a
shutter or blocking filter to not allow any light to hit the detector.

4096x4096 at 100 seconds exposures, N-frames
dark1, dark2, dark3, . . . , darkN
darks = np.array([dark1, dark2, dark3, darkN])
master_dark = np.median(darks, axis=0)

11.2 Dark subtraction

Each science and calibration frame will have dark current, residual electric current that is flowing through the array
when there is no light. Dark current increases with time, so all science and calibration frames need equivalent exposure
dark frames. To remove the dark current, we subtract a single dark in the real-time or a master dark in the final pipeline,
at the same exposure time as the science and calibration frames.

dark_subtracted_science = science - dark
dark_subtracted_flat = flat - dark

11.3 Remove detector artifacts

The detector will have two types of artifacts; permanent/semi-permanent and transient artifacts. Dead pixels, hot pixels
or “frozen” pixel fall with the permanent/semi-permanent artifacts while cosmic rays (CR) are within the transient
artifacts. Dead pixel are pixels that no longer function. Hot pixels are sensitive pixels that can have a non-linear
response to incoming photons. They can also turn on and off and can even respond normally until a certain flux is
achieved in which they become non-linear. “Frozen” pixels are pixels that have a low response rate (opposite of the hot
pixels), with similar types of problems. CRs are high energy photons from the sky that can hit the detector randomly
and leave bright artifacts.

For all types of detector artifacts, they are generally difficult to remove or remove completely with flat-fielding. To
deal with detector artifacts, they need to be either masked out or subtracted off. For permanent artifacts, a bad pixel

35

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

mask is used to mask the frame. Bad pixel masks need to be throughout the lifetime of the detector. Over time more
pixels may become dead, hot or frozen. In some cases, hot or frozen pixels might be able to be recovered, depending
on their severity. Hot, dead or frozen pixels, can be found by taking various length N number of dark exposures and
median combining them, if features are 10-20 sigma above and below the noise level, they will be clipped added to
the masked. Since the pixel-to-pixel response will change, we may apply a set of flat-fielding before clipping. CRs on
the other hand need to be removed from the frame. There are several methods for removing CRs such as L.A. Cosmic
(Dokkem et al. 2001) which takes the Laplacian to find artifacts with steep slopes in individual frames. In the most
severe cases it is possible find cosmic rays by taking a median of several science and calibration frames. In order to
properly mitigate CRs in the median case, one needs 3 or more frames in multiples of odd numbers (i.e. 3, 5, 7. . .).

• See details about creating and using a bad pixel map in the documentation about data quality initialization.

• See an example notebook on how to inizialize the bad pixel mask.

11.3.1 Data Quality (DQ) Initialization

Description

The Data Quality (DQ) initialization step in the calibration pipeline populates the DQ mask for the input dataset.
Flags from the appropriate static mask reference file in CRDS are copied into the PIXELDQ array of the input dataset,
because it is assumed that flags in the mask reference file pertain to problem conditions that are group- and integration-
independent.

We use the same flagging convention used for JWST, see their documentation.

A bad pixel mask is a datamodels.TMTMaskModel object with a dq extension with size (4096x4096) of time uint32.

It can be created with:

from jwst.datamodels import TMTMaskModel
f = TMTMaskModel()

First we need to setup metadata:

f.meta.name = "IRIS"
f.meta.detector = "IRIS1"

Then we can create the 2D array and set some flag value:

f.dq = np.zeros((4096,4096))
f.dq[np.random.randint(0, 4096, size=(10,2))] = 1024 # dead pixel
f.dq[np.random.randint(0, 4096, size=(10,2))] = 2048 # hot pixel

check the content of the flag:

np.histogram(f.dq, bins=3)
(array([16777196, 10, 10]),
array([0. , 682.66666667, 1365.33333333, 2048.]))

And finally write to the CRDS cache:

f.write(Path.home() / "crds_cache/references/tmt/iris/tmt_iris_mask_0001.fits")

Which flag is picked up by the pipeline is determined by the tmt_iris_mask_0001.rmap file, see the current file
content on Github.

The actual process consists of the following steps:

36 Chapter 11. Algorithms

https://gist.github.com/zonca/e15620ff5d26652bc201b180ec00cdce
https://jwst-pipeline.readthedocs.io/en/latest/jwst/references_general/references_general.html#data-quality-flags
https://github.com/oirlab/tmt-crds-cache/blob/master/mappings/tmt/tmt_iris_mask_0001.rmap
https://github.com/oirlab/tmt-crds-cache/blob/master/mappings/tmt/tmt_iris_mask_0001.rmap

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

• Determine what MASK reference file to use via the interface to the bestref utility in CRDS.

• If the PIXELDQ or GROUPDQ arrays of the input dataset do not already exist, which is sometimes the case for raw
input products, create these arrays in the input data model and initialize them to zero. The PIXELDQ array will
be 2D, with the same number of rows and columns as the input science data. The GROUPDQ array will be 4D with
the same dimensions (nints, ngroups, nrows, ncols) as the input science data array.

• Check to see if the input science data is in subarray mode. If so, extract a matching subarray from the full-frame
MASK reference file.

• Copy the DQ flags from the reference file mask to the science data PIXELDQ array using numpy’s bitwise_or
function.

See an example notebook on how to inizialize the bad pixel mask.

Step Arguments

The Data Quality Initialization step has no step-specific arguments.

Reference Files

The dq_init step uses a MASK reference file.

iris_pipeline.dq_init Package

Classes

DQInitStep([name, parent, config_file, . . .]) Initialize the Data Quality extension from the mask ref-
erence file.

DQInitStep

class iris_pipeline.dq_init.DQInitStep(name=None, parent=None, config_file=None, _vali-
date_kwds=True, **kws)

Bases: jwst.stpipe.Step

Initialize the Data Quality extension from the mask reference file.

The dq_init step initializes the pixeldq attribute of the input datamodel using the MASK reference file. For some
FGS exp_types, initalize the dq attribute of the input model instead. The dq attribute of the MASK model is
bitwise OR’d with the pixeldq (or dq) attribute of the input model.

Create a Step instance.

Parameters

name
[str, optional] The name of the Step instance. Used in logging messages and in cache file-
names. If not provided, one will be generated based on the class name.

parent
[Step instance, optional] The parent step of this step. Used to determine a fully-qualified
name for this step, and to determine the mode in which to run this step.

11.3. Remove detector artifacts 37

https://gist.github.com/zonca/e15620ff5d26652bc201b180ec00cdce
https://jwst-pipeline.readthedocs.io/en/latest/api/jwst.stpipe.Step.html#jwst.stpipe.Step

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

config_file
[str path, optional] The path to the config file that this step was initialized with. Use to
determine relative path names.

**kws
[dict] Additional parameters to set. These will be set as member variables on the new Step
instance.

Attributes Summary

reference_file_types

Methods Summary

process(self, input) Perform the dq_init calibration step

Attributes Documentation

reference_file_types = ['mask']

Methods Documentation

process(self, input)
Perform the dq_init calibration step

Parameters

input
[JWST datamodel] input jwst datamodel

Returns

output_model
[JWST datamodel] result JWST datamodel

Class Inheritance Diagram

DQInitStepStep

38 Chapter 11. Algorithms

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

11.4 Flat Fielding

The response of individual pixels may vary significantly pixel-to-pixel. In order to correct for this in the imager and the
IFS slicer, it is necessary illuminate the detector with a uniform light source. This can be accomplished by an internal
flat field, twilight flats or science fields with a sparse number of sources. Internal flat fields are usually provided by
the calibration unit, in this case the NSCU. Twilight flats are flats in which the telescope points to an area of the sky,
while tracking, and dithering around while taking exposures. Science fields with sparse number of sources can be also
used for flat fields, as long as only few bright sources need to be masked out and the there is a large enough dither such
that every pixel will be on blank sky at some point. The exposures for all cases need be before the detectors become
non-linear but with enough signal to illuminate each pixel, this is typically 10000-20000 counts for a Hawaii-2RG.
The flats are processed by the normalize flats algorithm . Science frames are then divided by the normalized flats.
Sources detected in sky flats or science flats will be masked out.

11.5 Scaled sky-subtraction

Imager: Science images can as be used sky in sparse or medium density fields (density compared to the dither size).
In high density fields or a source that fills the detectors, a separate sky will be needed. The sky background will be
estimated by measuring the median of each detector. For the real-time pipeline the median of the sky background will
be subtracted off. The F-DRP will include an advanced algorithm that iteratively determines the sky background and
subtracts it off following the procedure outlined in Clement et al. 2012;

1. Subtract median from each image (detector)

• Account for gain and sky, apply 5 sigma rejection (i.e. MAD)

• Keep track of the values subtracted

2. For each individual median subtracted image:

• Run SExtractor to detect all objects in frame and generate an object mask.

– Save “-object” check image

3. Compute the median of each pixel using the mask computed previously but not including the pixel from the
image you are working on

4. Add background value from (3) to the median computed in (1), this will be the new sky background

5. Subtract the new background from original image

The iterative process would include the mosaicking algorithm which would be the following

1. Stack final images

2. Redetect sources

3. Mask sources

This process would repeat until no more additional sources are detected for masking.

IFS: The sky-subtraction algorithm will scale the sky frame to match each of the individual science frames, utilizing
the Davies et al. 2007 methodology. Various OH lines arise from families of vibrational transitions. While sky lines
can vary randomly throughout the night, these families fluctuate together. Using brighter sky lines, comparing the
science and sky data cubes it is possible to determine the ratio between OH lines for each transition family. These
ratios can be applied to the sky data cube in order to minimize the residuals in the subtracted cube. The scaling
ratios are applied to the entire sky data cube, rather than to an extracted spectrum, such that any spatial or wavelength
variations in the sky lines across the cube will still be accurately matched and cancelled out in the sky subtraction.

11.4. Flat Fielding 39

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

11.6 Flux calibration

Imager: To convert from DN to flux (erg/s/cm^2/Hz) or AB magnitude a standard star needs to be observed in the
same instrument configuration, airmass, and close in time as the science observations.
For science fields and filters that overlap with SDSS (citation), Pan-STARRS (citation) or UKIDDS (citation) will be
able to use the stars within the science frame for as standards (2MASS may be too bright and low resolution to use).
For science fields outside these surveys or for more precise photometry will require observing a standard star from a
standard field. Apertures of increasing radii will be used to determine the curve of growth and the appropriate
aperture to use with the PSF and seeing, maximizing S/N. Once an aperture size is determined, the flux is integrated
the flux for a given band to produce the flux of the star in DN. Aperture corrections will be applied based PSF and the

seeing. For relative photometry, 𝑚1 −𝑚2 = −2.5𝑙𝑜𝑔10

(︂
𝑖
𝑓1
𝑓2

)︂
, where m1 and m2 are magnitudes of the sources and

f1 and f1 are fluxes of the sources. This can be performed with a single source or the entire field with known sources
to scale image. The zeropoints of the image can be determined from the known sources integrated flux and

magnitude, (i.e. 𝑚 = −2.5𝑙𝑜𝑔10

(︂
𝐷𝑁

𝑒𝑥𝑝𝑡𝑖𝑚𝑒

)︂
+ 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡). On sky tests will be required to determine the

extinction corrected instrumental zeropoints. IFS: To convert from DN to flux units (erg/s/cm^2/Ang) a standard star
needs to be observed in the same instrument configuration, airmass,and close in time as the science observations. In
the near-IR the standard star at minimum needs to have zJHK photometry or ideally a spectrophotometric standard
(in which a calibrated spectrum already exists). For a standard star with zJHK photometry, the photometry will be fit
with a Planck law (or Rayleigh-Jeans approximation 1/𝜆4). Apertures of increasing radii will be used to determine
the curve of growth and the appropriate aperture to use with the PSF and seeing. Once an aperture size is determined,
the flux is integrated for a given wavelength to produce the spectrum of the standard star in DN. Aperture corrections
based on the with growth curve and imager data. The science data cube and standard data cube are normalized by the
exposure time such that they are each DN/s (count rate).
For the standard, we take the ratio of the flux (ergs/s/cm^2/Ang) over the count rate (DN/s). Each spaxel in the

science data cube is multiplied by the ratio (flux/count rate) from the standard 𝐹𝑠𝑐𝑖 =
𝐹𝑠𝑡𝑑

𝑅𝑠𝑡𝑑
*𝑅𝑠𝑐𝑖 , where F is flux

(erg/s/cm^2) and R is count rate (DN/s)

11.7 Mosaic/Combine SCI

Imager: Mosaicking in the imager will be based on the dither pattern selected, and integer and non-integer pixel shifts
will be supported. The dithers will be stored in the FITS header keywords and there will be support for an external file
with the offsets. For integer pixel shits, frames will be combined using the median or mean, with sigma clipping to clip
out deviant pixels. The clipping options will include using the standard deviation or median absolute deviation (MAD).
For non-integer pixel shifts, there are widely used efficient software packages that handle drizzling and resampling,
such as SWarp and DrizzlePac (previously known as AstroDrizzle).[j]

IFS: Mosaicking in the IFS will be relative to a source or the dither keywords in the FITS headers at a fixed PA. There
will also be an option to stack the images based on an external offsets file. Currently, only integer pixel shifts will be
supported. Frames will be combined using the median or mean, with sigma clipping to clip out deviant pixels. The
clipping options will include using the standard deviation or median absolute deviation (MAD).

40 Chapter 11. Algorithms

CHAPTER

TWELVE

IMAGER ALGORITHMS

12.1 Field distortion correction

The field distortion correction will correct the distortion in the imager field due to the optics of the system. These
distortions can be chromatic and may need to be corrected per band. A calibration file with the distortion solution
will be used using the distortion solution algorithm . The final image will need to be rectified and resampled based on
the distortion solution. Software already exists to perform this task such as, SWarp, for rectifying and resampling the
image based on the new distortion solution.

41

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

42 Chapter 12. Imager Algorithms

CHAPTER

THIRTEEN

IFS ALGORITHMS

13.1 Spectral extraction

Lenslet: Flux from an individual lenslet will be spread out into neighboring lenslets. Depending on the spacing be-
tween the lenslets, will determine how much flux falls into a neighboring lenslet. In order to recover the flux for an
individual lenslet, it will be necessary to perform a deconvolution on the entire lenslet array, assigning flux to the ap-
propriate lenslet. OSIRIS uses the Gauss-Seidel method to iteratively assign flux to individual spatial pixels (spaxels;
Krabbe et al. 2004). The biggest assumption of the method is the knowledge of the PSF. In order to mitigate this
problem, the PSF needs to be mapped in 2D and the structure of each lenslets PSF needs to be known precisely. Thus,
the spectral extraction requires additional calibration files, rectification matrix (rectmat), which contains information
about each lenslets PSF as a function of wavelength. Additional methods may be needed during INT. Slicer: Spec-
tral extraction of the slicer will be similar to MOS (multi-object spectroscopy). The trace of each spectrum will be
performed, typically fitting a low order polynomial. An aperture will be used over the spectrum, optimizing signal-to-
noise (Horne 1986?). The extraction will be highly dependent on the extraction region and sky-subtraction algorithms
.

13.2 Wavelength calibration

Wavelength calibration is performed using on arc lamps taken during daytime calibrations, typically Ar, Kr, and Xe.
The arc lamps provide better velocity resolution and stability over OH skylines. A global wavelength solution is found
for all of the spectra by fitting a low order polynomial. Legendre polynomials are preferred as they can be inverted
(i.e. wavelength(pixel) → pixel(wavelength)) without significant errors in the coefficients. Using the global solution,
a solution is found for each spaxel (spatial pixel). The solutions will be resampled to a common linear wavelength
scale. These solutions are found be fairly stable in OSIRIS and we expect them to be similar. We anticipate checking
the solution monthly for any changes. The solutions will be static based on the input lamp spectra and date they were
taken.

13.3 Cube assembly

The spectral data cubes are assembled in this algorithm. The algorithm takes each extracted spectrum from spectral ex-
traction routine and maps them to an x, y position on the sky (spatial rectification) based on the WCS information, and
their z positions are shifted based on their individual wavelength solutions. The data cube format is (x, y, wavelength),
which is common among data cubes with wavelength and frequency (i.e. VLT/SINFONI, ALMA and VLA).

43

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

13.4 Residual ADC

If necessary, implement residual ADC module (TBD). The ADC corrects the for the refraction caused by the atmo-
sphere, at varying airmasses (or elevation). If the residuals from ADC correction are significant (like 4th order), it may
be necessary to implement a module. To calibrate it, on-sky tests are required. One such test is to use a star to map the
dispersion through the system at varying airmasses. Once the system is calibrated, temperature and pressure from the
local weather, dome, telescope and instrument can be incorporated into the correction of the residuals per wavelength
of light. With temperature/pressure lookup table, the DRS will have the correct spectral trace for the extraction. See
instrument dispersion for how this is dealt with internally.

13.5 Telluric correction

Telluric absorption is caused by the Earths atmosphere, in which all spectra are attenuated by it. In order to correct for
it, typically a featureless star is used to measure the attenuation carefully and apply a correction to the science spectra.
Telluric correction as outlined by Vacca et al. 2003:

1. Normalization of the observed A-type main sequence star spectrum (e.g. O, B, and A should be fine with
“featureless” spectra, as well as white dwarfs) in the vicinity of a suitable absorption feature (as defined below);

2. Determination of the radial velocity shift of the A-type star;

3. Shifting the Vega model spectrum to the radial velocity of the A-type star;

4. Scaling and reddening the Vega model spectrum to match the observed magnitudes of the A-type star;

5. Construction of a convolution kernel from a small region around an absorption feature in the normalized ob-
served A-type and model Vega spectra;

6. Convolution of the kernel with the shifted, scaled, and reddened model of Vega;

7. Scaling the equivalent widths of the various H lines to match those of the observed A-type star.

Finally, the convolved model is divided by the observed A-type spectrum and the resulting telluric correction spectrum
is multiplied by the observed target spectrum.

44 Chapter 13. IFS Algorithms

CHAPTER

FOURTEEN

ADVANCED ALGORITHMS

14.1 Optimizing readouts

All of the algorithms used with ROP-DRS, including the various sampling techniques (i.e UTR, MCDS), will be
available offline for an end user that wants extra control of optimizing the readouts of their science. For example, a
user may want to include readouts with a specific seeing constraint (i.e. removing poor seeing frames).

14.2 PSF-reconstruction

Knowledge of the PSF is essential in the reduction of AO data. However, this is challenging because of changing
conditions (seeing) and the rate at which they change as well as the structure of the PSF. In order to reconstruct the
PSF for a given observation, a simulated PSF from the NFIRAOS PSF simulator will be used to do the deconvolution
on the imager and IFS. Laurent Jolissaint et al. 2011 (AO4ELT 2011)

45

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

46 Chapter 14. Advanced Algorithms

CHAPTER

FIFTEEN

CALIBRATION ALGORITHMS

15.1 Rectmats

IFS lenslets: Rectmat (or rectification matrix) is a calibration file used for the spectral extraction of the IFS lenslet
data for a specific scale and filter. An individual rectmat contains information about each lenslets PSF as a function
of wavelength. The rectmats are constructed from spectral white light scans, which scan each individual lenslet
to determine their PSF and contribution to neighboring lensiets. This information can also be used to remove the
variation from lenslet-to-lenslet, similar to a flat field.

15.2 Distortion solution

The distortion solution algorithm will determine the distortion of the image on the imager. It will be constructed
by using a static uniform grid pinholes (pinhole mask) and on sky calibration using dense stellar field (i.e. globular
cluster). The distortion solution will be determined by fitting some type of nth order 2D polynomial (surface) to the
position of the pinholes. Software already exists to perform these tasks such as; (1) SExtractor, for detecting the
sources and (2) SCAMP, for determining the distortion.

15.3 Super sky

Super sky frames are median combined sky frames. The purpose of combining them is increase the signal-to-noise of
the sky. The super sky frames are used for scaled sky subtraction of the imager (in the case where the source fills the
imager) and the IFS slicer.

15.4 Super dark

See generate master dark

15.5 Instrumental dispersion

The optics of IRIS (including from NFIRAOS) can cause spectral curvature, or instrumental chromatic dispersion. A
white light fiber can be used to map the dispersion (x and y position of the spectra) in the system. In OSIRIS, most of
the instrumental dispersion was caused by the dichroic used in the AO system.

47

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

15.6 Normalize flats

Imager: The normalize flats algorithm takes the imaging flats and generates a normalized flat (values 1 or close to one)
which are used to correct the pixel-to-pixel variation. To normalize the imaging flats, N number of flats are median
combined, subtracted by a dark (real-time) or master dark (F-DRP) and then divided by either the median or mode
(depending on the distribution of pixel values on the detector) of the combined flats.

normalize_flat = (np.median(flat) - dark)/np.median(flat)

IFS slicer: The normalize flats algorithm takes the spectral flats and generates a normalized flat (values 1 or close to
one) which are used to correct the pixel-to-pixel variation. The spectral flats median combined and subtracted by a
dark (real-time) or master dark (F-DRP). To normalize the spectral flats, the spectral response is fit with a polynomial
and subtracted off each flat, and then divided by either their median or mode (depending on the distribution of pixel
values on the detector).

48 Chapter 15. Calibration algorithms

Part VI

Reference/API

49

CHAPTER

SIXTEEN

IRIS_PIPELINE PACKAGE

16.1 Functions

monkeypatch_jwst_datamodels()
test(**kwargs) Run the tests for the package.

16.1.1 monkeypatch_jwst_datamodels

iris_pipeline.monkeypatch_jwst_datamodels()

16.1.2 test

iris_pipeline.test(**kwargs)
Run the tests for the package.

This method builds arguments for and then calls pytest.main.

Parameters

package
[str, optional] The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’. Accepts comma
separated string to specify multiple packages. If nothing is specified all default tests are run.

args
[str, optional] Additional arguments to be passed to pytest.main in the args keyword
argument.

docs_path
[str, optional] The path to the documentation .rst files.

open_files
[bool, optional] Fail when any tests leave files open. Off by default, because this adds extra
run time to the test suite. Requires the psutil package.

parallel
[int or ‘auto’, optional] When provided, run the tests in parallel on the specified number
of CPUs. If parallel is 'auto', it will use the all the cores on the machine. Requires the
pytest-xdist plugin.

51

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

pastebin
[(‘failed’, ‘all’, None), optional] Convenience option for turning on py.test pastebin output.
Set to ‘failed’ to upload info for failed tests, or ‘all’ to upload info for all tests.

pdb
[bool, optional] Turn on PDB post-mortem analysis for failing tests. Same as specifying
--pdb in args.

pep8
[bool, optional] Turn on PEP8 checking via the pytest-pep8 plugin and disable normal tests.
Same as specifying --pep8 -k pep8 in args.

plugins
[list, optional] Plugins to be passed to pytest.main in the plugins keyword argument.

remote_data
[{‘none’, ‘astropy’, ‘any’}, optional] Controls whether to run tests marked with
@pytest.mark.remote_data. This can be set to run no tests with remote data (none), only
ones that use data from http://data.astropy.org (astropy), or all tests that use remote data
(any). The default is none.

repeat
[int, optional] If set, specifies how many times each test should be run. This is useful for
diagnosing sporadic failures.

skip_docs
[bool, optional] When True, skips running the doctests in the .rst files.

test_path
[str, optional] Specify location to test by path. May be a single file or directory. Must be
specified absolutely or relative to the calling directory.

verbose
[bool, optional] Convenience option to turn on verbose output from py.test. Passing True is
the same as specifying -v in args.

16.2 Classes

BackgroundStep([name, parent, config_file, . . .]) BackgroundStep: Subtract background exposures from
target exposures.

DQInitStep([name, parent, config_file, . . .]) Initialize the Data Quality extension from the mask ref-
erence file.

FlatFieldStep([name, parent, config_file, . . .]) Flat-field a science image using a flatfield reference im-
age.

Image2Pipeline(*args, **kwargs) Image2Pipeline: Processes JWST imaging-mode slope
data from Level-2a to Level-2b.

NormalizeStep([name, parent, config_file, . . .]) DarkCurrentStep: Performs dark current correction by
subtracting dark current reference data from the input
science data model.

PreprocessFlatfield(*args, **kwargs) PreprocessFlatfield: Remove dark and normalize expo-
sure to create a flat field to be later added to the CRDS.

SubtractImagesStep([name, parent, . . .]) SubtractImagesStep: Subtract two exposures from one
another to accomplish background subtraction.

UnsupportedPythonError

52 Chapter 16. iris_pipeline Package

http://data.astropy.org

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

16.2.1 BackgroundStep

class iris_pipeline.BackgroundStep(name=None, parent=None, config_file=None, _vali-
date_kwds=True, **kws)

Bases: jwst.stpipe.Step

BackgroundStep: Subtract background exposures from target exposures.

Create a Step instance.

Parameters

name
[str, optional] The name of the Step instance. Used in logging messages and in cache file-
names. If not provided, one will be generated based on the class name.

parent
[Step instance, optional] The parent step of this step. Used to determine a fully-qualified
name for this step, and to determine the mode in which to run this step.

config_file
[str path, optional] The path to the config file that this step was initialized with. Use to
determine relative path names.

**kws
[dict] Additional parameters to set. These will be set as member variables on the new Step
instance.

Attributes Summary

spec

Methods Summary

process(self, input, bkg_list) Subtract the background signal from target expo-
sures by subtracting designated background images
from them.

Attributes Documentation

spec = '\n sigma = float(default=3.0) # Clipping threshold\n maxiters = integer(default=None) # Number of clipping iterations\n '

Methods Documentation

process(self, input, bkg_list)
Subtract the background signal from target exposures by subtracting designated background images from
them.

Parameters

input: JWST data model
input target data model to which background subtraction is applied

16.2. Classes 53

https://jwst-pipeline.readthedocs.io/en/latest/api/jwst.stpipe.Step.html#jwst.stpipe.Step

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

bkg_list: filename list
list of background exposure file names

Returns

result: JWST data model
the background-subtracted target data model

16.2.2 DQInitStep

class iris_pipeline.DQInitStep(name=None, parent=None, config_file=None, _validate_kwds=True,
**kws)

Bases: jwst.stpipe.Step

Initialize the Data Quality extension from the mask reference file.

The dq_init step initializes the pixeldq attribute of the input datamodel using the MASK reference file. For some
FGS exp_types, initalize the dq attribute of the input model instead. The dq attribute of the MASK model is
bitwise OR’d with the pixeldq (or dq) attribute of the input model.

Create a Step instance.

Parameters

name
[str, optional] The name of the Step instance. Used in logging messages and in cache file-
names. If not provided, one will be generated based on the class name.

parent
[Step instance, optional] The parent step of this step. Used to determine a fully-qualified
name for this step, and to determine the mode in which to run this step.

config_file
[str path, optional] The path to the config file that this step was initialized with. Use to
determine relative path names.

**kws
[dict] Additional parameters to set. These will be set as member variables on the new Step
instance.

Attributes Summary

reference_file_types

Methods Summary

process(self, input) Perform the dq_init calibration step

Attributes Documentation

reference_file_types = ['mask']

54 Chapter 16. iris_pipeline Package

https://jwst-pipeline.readthedocs.io/en/latest/api/jwst.stpipe.Step.html#jwst.stpipe.Step

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

Methods Documentation

process(self, input)
Perform the dq_init calibration step

Parameters

input
[JWST datamodel] input jwst datamodel

Returns

output_model
[JWST datamodel] result JWST datamodel

16.2.3 FlatFieldStep

class iris_pipeline.FlatFieldStep(name=None, parent=None, config_file=None, _vali-
date_kwds=True, **kws)

Bases: jwst.stpipe.Step

Flat-field a science image using a flatfield reference image.

Create a Step instance.

Parameters

name
[str, optional] The name of the Step instance. Used in logging messages and in cache file-
names. If not provided, one will be generated based on the class name.

parent
[Step instance, optional] The parent step of this step. Used to determine a fully-qualified
name for this step, and to determine the mode in which to run this step.

config_file
[str path, optional] The path to the config file that this step was initialized with. Use to
determine relative path names.

**kws
[dict] Additional parameters to set. These will be set as member variables on the new Step
instance.

Attributes Summary

reference_file_types
spec

Methods Summary

process(self, input) This is where real work happens.
skip_step(self, input_model) Set the calibration switch to SKIPPED.

16.2. Classes 55

https://jwst-pipeline.readthedocs.io/en/latest/api/jwst.stpipe.Step.html#jwst.stpipe.Step

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

Attributes Documentation

reference_file_types = ['flat']

spec = '\n # Suffix for optional output file for interpolated flat fields.\n # Note that this is only used for NIRSpec spectrographic data.\n flat_suffix = string(default=None)\n '

Methods Documentation

process(self, input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

skip_step(self, input_model)
Set the calibration switch to SKIPPED.

This method makes a copy of input_model, sets the calibration switch for the flat_field step to SKIPPED
in the copy, closes input_model, and returns the copy.

16.2.4 Image2Pipeline

class iris_pipeline.Image2Pipeline(*args, **kwargs)
Bases: jwst.stpipe.Pipeline

Image2Pipeline: Processes JWST imaging-mode slope data from Level-2a to Level-2b.

Included steps are: background_subtraction, assign_wcs, flat_field, photom and resample.

See Step.__init__ for the parameters.

Attributes Summary

image_exptypes
spec
step_defs

Methods Summary

process(self, input) This is where real work happens.
process_exposure_product(self, exp_product) Process an exposure found in the association product

Attributes Documentation

image_exptypes = ['MIR_IMAGE', 'NRC_IMAGE', 'NIS_IMAGE']

spec = '\n save_bsub = boolean(default=False) # Save background-subracted science\n '

step_defs = {'assign_wcs': <class 'jwst.assign_wcs.assign_wcs_step.AssignWcsStep'>, 'bkg_subtract': <class 'iris_pipeline.background.background_step.BackgroundStep'>, 'dark_current': <class 'iris_pipeline.dark_current.dark_current_step.DarkCurrentStep'>, 'flat_field': <class 'iris_pipeline.flatfield.flat_field_step.FlatFieldStep'>, 'photom': <class 'jwst.photom.photom_step.PhotomStep'>, 'resample': <class 'jwst.resample.resample_step.ResampleStep'>}

56 Chapter 16. iris_pipeline Package

https://jwst-pipeline.readthedocs.io/en/latest/api/jwst.stpipe.Pipeline.html#jwst.stpipe.Pipeline

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

Methods Documentation

process(self, input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

process_exposure_product(self, exp_product, pool_name=’ ’, asn_file=’ ’)
Process an exposure found in the association product

Parameters

exp_product: dict
A Level2b association product.

pool_name: str
The pool file name. Used for recording purposes only.

asn_file: str
The name of the association file. Used for recording purposes only.

16.2.5 NormalizeStep

class iris_pipeline.NormalizeStep(name=None, parent=None, config_file=None, _vali-
date_kwds=True, **kws)

Bases: jwst.stpipe.Step

DarkCurrentStep: Performs dark current correction by subtracting dark current reference data from the input
science data model.

Create a Step instance.

Parameters

name
[str, optional] The name of the Step instance. Used in logging messages and in cache file-
names. If not provided, one will be generated based on the class name.

parent
[Step instance, optional] The parent step of this step. Used to determine a fully-qualified
name for this step, and to determine the mode in which to run this step.

config_file
[str path, optional] The path to the config file that this step was initialized with. Use to
determine relative path names.

**kws
[dict] Additional parameters to set. These will be set as member variables on the new Step
instance.

Attributes Summary

spec

Methods Summary

16.2. Classes 57

https://jwst-pipeline.readthedocs.io/en/latest/api/jwst.stpipe.Step.html#jwst.stpipe.Step

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

process(self, input) This is where real work happens.

Attributes Documentation

spec = '\n dark_output = output_file(default = None) # Dark model subtracted\n '

Methods Documentation

process(self, input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

16.2.6 PreprocessFlatfield

class iris_pipeline.PreprocessFlatfield(*args, **kwargs)
Bases: jwst.stpipe.Pipeline

PreprocessFlatfield: Remove dark and normalize exposure to create a flat field to be later added to the CRDS.

Included steps are: dark_current, normalize

See Step.__init__ for the parameters.

Attributes Summary

step_defs

Methods Summary

process(self, input) This is where real work happens.
process_exposure_product(self, exp_product) Process an exposure found in the association product

Attributes Documentation

step_defs = {'dark_current': <class 'iris_pipeline.dark_current.dark_current_step.DarkCurrentStep'>, 'normalize': <class 'iris_pipeline.normalize.normalize_step.NormalizeStep'>}

Methods Documentation

process(self, input)
This is where real work happens. Every Step subclass has to override this method. The default behaviour
is to raise a NotImplementedError exception.

process_exposure_product(self, exp_product, pool_name=’ ’, asn_file=’ ’)
Process an exposure found in the association product

Parameters

58 Chapter 16. iris_pipeline Package

https://jwst-pipeline.readthedocs.io/en/latest/api/jwst.stpipe.Pipeline.html#jwst.stpipe.Pipeline

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

exp_product: dict
A Level2b association product.

pool_name: str
The pool file name. Used for recording purposes only.

asn_file: str
The name of the association file. Used for recording purposes only.

16.2.7 SubtractImagesStep

class iris_pipeline.SubtractImagesStep(name=None, parent=None, config_file=None, _vali-
date_kwds=True, **kws)

Bases: jwst.stpipe.Step

SubtractImagesStep: Subtract two exposures from one another to accomplish background subtraction.

Create a Step instance.

Parameters

name
[str, optional] The name of the Step instance. Used in logging messages and in cache file-
names. If not provided, one will be generated based on the class name.

parent
[Step instance, optional] The parent step of this step. Used to determine a fully-qualified
name for this step, and to determine the mode in which to run this step.

config_file
[str path, optional] The path to the config file that this step was initialized with. Use to
determine relative path names.

**kws
[dict] Additional parameters to set. These will be set as member variables on the new Step
instance.

Attributes Summary

spec

Methods Summary

process(self, input1, input2) Subtract the background signal from a JWST data
model by subtracting a background image from it.

Attributes Documentation

spec = '\n '

16.2. Classes 59

https://jwst-pipeline.readthedocs.io/en/latest/api/jwst.stpipe.Step.html#jwst.stpipe.Step

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

Methods Documentation

process(self, input1, input2)
Subtract the background signal from a JWST data model by subtracting a background image from it.

Parameters

input1: JWST data model
input science data model to be background-subtracted

input2: JWST data model
background data model

Returns

result: JWST data model
background-subtracted science data model

16.2.8 UnsupportedPythonError

exception iris_pipeline.UnsupportedPythonError

16.3 Class Inheritance Diagram

BackgroundStep

Step

DQInitStep

FlatFieldStep

Pipeline

NormalizeStep

SubtractImagesStep

Image2Pipeline

PreprocessFlatfield

UnsupportedPythonError

60 Chapter 16. iris_pipeline Package

PYTHON MODULE INDEX

i
iris_pipeline, 51
iris_pipeline.dq_init, 37

61

iris𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.𝑑𝑒𝑣51

62 Python Module Index

INDEX

B
BackgroundStep (class in iris_pipeline), 53

D
DQInitStep (class in iris_pipeline), 54
DQInitStep (class in iris_pipeline.dq_init), 37

F
FlatFieldStep (class in iris_pipeline), 55

I
Image2Pipeline (class in iris_pipeline), 56
image_exptypes (iris_pipeline.Image2Pipeline at-

tribute), 56
iris_pipeline (module), 51
iris_pipeline.dq_init (module), 37

M
monkeypatch_jwst_datamodels() (in module

iris_pipeline), 51

N
NormalizeStep (class in iris_pipeline), 57

P
PreprocessFlatfield (class in iris_pipeline), 58
process() (iris_pipeline.BackgroundStep method), 53
process() (iris_pipeline.dq_init.DQInitStep method), 38
process() (iris_pipeline.DQInitStep method), 55
process() (iris_pipeline.FlatFieldStep method), 56
process() (iris_pipeline.Image2Pipeline method), 57
process() (iris_pipeline.NormalizeStep method), 58
process() (iris_pipeline.PreprocessFlatfield method),

58
process() (iris_pipeline.SubtractImagesStep method),

60
process_exposure_product()

(iris_pipeline.Image2Pipeline method), 57
process_exposure_product()

(iris_pipeline.PreprocessFlatfield method),
58

R
reference_file_types

(iris_pipeline.dq_init.DQInitStep attribute), 38
reference_file_types (iris_pipeline.DQInitStep at-

tribute), 54
reference_file_types (iris_pipeline.FlatFieldStep at-

tribute), 56

S
skip_step() (iris_pipeline.FlatFieldStep method), 56
spec (iris_pipeline.BackgroundStep attribute), 53
spec (iris_pipeline.FlatFieldStep attribute), 56
spec (iris_pipeline.Image2Pipeline attribute), 56
spec (iris_pipeline.NormalizeStep attribute), 58
spec (iris_pipeline.SubtractImagesStep attribute), 59
step_defs (iris_pipeline.Image2Pipeline attribute), 56
step_defs (iris_pipeline.PreprocessFlatfield attribute),

58
SubtractImagesStep (class in iris_pipeline), 59

T
test() (in module iris_pipeline), 51

U
UnsupportedPythonError, 60

63

	I Getting Started
	Getting started

	II Example run
	Example pipeline execution

	III Design
	IRIS Data Reduction System design
	Purpose
	Software infrastructure
	File format
	Example run
	Access calibration files via the Calibration Reference Data System (CRDS)
	Metadata

	IV Calibration
	Calibration

	V Algorithms
	Algorithms
	Imager Algorithms
	IFS Algorithms
	Advanced Algorithms
	Calibration algorithms

	VI Reference/API
	iris_pipeline Package
	Python Module Index
	Index

